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Friday, November 18th, 2011

This handout is meant to give you a couple more example of all the techniques
discussed in chapter 9, to counterbalance all the dry theory and complicated ap-
plications in the differential equations book! Enjoy! :)

Note: Make sure to read this carefully! The methods presented in the book are
a bit strange and convoluted, hopefully the ones presented here should be easier
to understand!

1 Systems of differential equations
Find the general solution to the following system:


x′1(t) = −x1(t)− x2(t) + 3x3(t)
x′2(t) = x1(t) + x2(t)− x3(t)
x′3(t) = −x1(t)− x2(t) + 3x3(t)

First re-write the system in matrix form:

x′ = Ax

Where:

x =

x1(t)x2(t)
x3(t)

 A =

−1 −1 3
1 1 −1
−1 −1 3


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Now diagonalize A: A = PDP−1, where:

D =

1 0 0
0 2 0
0 0 0

 , P =

1 1 1
1 0 −1
1 1 0


Note: To find the eigenvalues, solve det(A − λI) = 0. You should get

λ = 1, 2, 0. The diagonal entries of D are λ = 1, 2, 0. Then, for each eigen-
value, find a basis for Nul(A − λI). The the columns of P are the eigenvectors
you found.

Then use the following fact:

Fact: For each eigenvalue λ and eigenvector v you found, the corresponding
solution is x(t) = eλtv

Hence here, the solution is:

x(t) = Aet

11
1

+Be2t

10
1

+ C

 1
−1
0


(Note: Here e0t = 1)

1.1 Aside: Why does this work?
Suppose you want to solve x′ = Ax, since A = PDP−1, this becomes:

x′ = PDP−1x

So:

x′ = PD
(
P−1x

)
Now let y = P−1x, so x = Py (remember Peyam, not Pexam). Then the

above becomes:
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x′ = PDy

P−1x′ = Dy

But P−1 is like a constant, so it gets inside the derivative!(
P−1x

)′
= Dy

Finally, use y = P−1x, and you get:

y′ = Dy

Now solve the system: y′ = Dy, which is easier to solve:
y′1(t) = y1(t)
y′2(t) = 2y1(t)
y′3(t) = 0

Which gives you: 
y1(t) = Aet

y2(t) = Be2t

y3(t) = Ce0t = C

Finally, use x = Py to get:

x1(t)x2(t)
x3(t)

 =

1 1 1
1 0 −1
1 1 0

AetBe2t

C

 = Aet

11
1

+Be2t

10
1

+ C

 1
−1
0



Note: The matrix:

X(t) =

et e2t 1
et 0 −1
et e2t 0


(where you essentially ignore the constants A,B,C) is called a fundamental

matrix for the system.
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2 Complex eigenvalues

2.1 Solve the system x′ = Ax, where:

A =

[
−1 −2
8 −1

]

Eigenvalues of A: λ = −1± 4i.

From now on, only consider one eigenvalue, say λ = −1 + 4i.

A corresponding eigenvector is
[
i
2

]

Now use the following fact:

Fact: For each eigenvalue λ and eigenvector v you found, the corresponding
solution is x(t) = eλtv

Hence, one solution is:

x(t) = e(−1+4i)t

[
i
2

]
Now split into real and imaginary parts and multiply everything out and group

everything back into real and imaginary parts to get:

x(t) =
(
e−t cos(4t) + ie−t sin(4t)

)([0
2

]
+ i

[
1
0

])
=

(
e−t cos(4t)

[
0
2

]
− e−t sin(4t)

[
1
0

])
+ i

(
e−t sin(4t)

[
0
2

]
+ e−t cos(4t)

[
1
0

])
Hence the general solution is:

x(t) = A

(
e−t cos(4t)

[
0
2

]
− e−t sin(4t)

[
1
0

])
+B

(
e−t sin(4t)

[
0
2

]
+ e−t cos(4t)

[
1
0

])
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3 Undetermined coefficients

3.1 Solve x′ = Ax+ f , where

A =

[
1 2
3 4

]
f(t) =

[
et + cos(t)

4et

]

As usual, x(t) = x0(t) + xp(t), where:

• x0(t) is the general solution to x′ = Ax

• xp(t) is one particular solution to x′ = Ax+ f(t)

To find x0, use the techniques discussed in 1.

To find xp, use:

Undetermined coefficients:

First group the terms in f which ‘look alike’:

f(t) =

[
et

4et

]
+

[
cos(t)
0

]
=

[
1
4

]
et +

[
1
0

]
cos(t)

Now guess:

xp = aet + b cos(t) + c sin(t)

where a =

[
a1
a2

]
,b =

[
b1
b2

]
, c =

[
c1
c2

]
.

Now plug in xp into the equation x′ = Ax+ f , and solve for a,b, c

Remarks:
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1) Notice how similar this is to our usual way of doing undetermined coeffi-
cients! The only difference here is that a is a vector instead of a number!

2) Remember to always put a sin(t) term whenever you see a cos(t) term and
vice-versa!

3) The same rule about adding a t or not holds in this case too (but it’s very
rare).

4 Variation of parameters

4.1 Find the general solution to x′ = Ax+ f , where:

A =

−1 −1 3
1 1 −1
−1 −1 3

 f(t) =

 et

ln(t)
tan(t)


As usual, x(t) = x0(t) + xp(t).

We already found x0(t) in the first example:

x0(t) = A

etet
et

+B

e2t0
e2t

+ C

 1
−1
0



To find xp(t), use:

Variation of Parameters: Suppose

xp(t) = v1(t)

etet
et

+ v2(t)

e2t0
e2t

+ v3(t)

 1
−1
0


Consider the (pre)-Wronskian (or fundamental matrix):
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W̃ (t) = X(t) =

et e2t 1
et 0 −1
et e2t 0


(essentially put all the vectors you found in one matrix)
And solve:

W̃ (t)

v′1(t)v′2(t)
v′3(t)

 =

 et

ln(t)
tan(t)


That is: v′1(t)v′2(t)

v′3(t)

 =
(
W̃ (t)

)−1  et

ln(t)
tan(t)


This gives you v′1, v

′
2, v
′
3.

To get v1, v2, v3, integrate the equations you found.

And finally, to get xp, use:

xp(t) = v1(t)

etet
et

+ v2(t)

e2t0
e2t

+ v3(t)

 1
−1
0


And hence x(t) = x0(t) + xp(t).

Note: The following formula might come in handy:

IfA =

[
a b
c d

]
then A−1 =

1

ad− bc

[
d −b
−c a

]
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5 Matrix exponential

5.1 Find eAt, where:

A =

−2 0 0
4 −2 0
1 0 −2


Eigenvalues of A: λ = −2, with multiplicity 3.

IMPORTANT: The following technique works only in this case (where we
have one eigenvalue with full multiplicity). For all the other cases, use the next
example.

Then:

eAt = e−2t
(
I + (A+ 2I)t+ (A+ 2I)2

t2

2!

)
=

 e−2t 0 0
4te−2t e−2t 0
te−2t 0 e−2t


Note: If λ had multiplicity 2, we would stop at (A + 2I)t. But if it had

multiplicity 4, we would add a (A+ 2I)3 t
3

3!
term.

General method:

5.2 Find eAt, where:

A =

[
16 −35
6 −13

]
Diagonalize A: A = PDP−1, where:

D =

[
2 0
0 1

]
, P =

[
5 7
2 3

]
Then:

eAt = PeDtP−1 =

[
5 7
2 3

] [
e2t 0
0 et

] [
5 7
2 3

]−1
=

[
15e2t − 14et 35et − 35e2t

6e2t − 6et 15et − 14e2t

]
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Point: The general solution to x′ = Ax is x(t) = eAtc, where c is a constant
vector!

Here, we get:

x(t) = A

[
15e2t − 14et

6e2t − 6et

]
+B

[
35et − 35e2t

15et − 14e2t

]
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