Systems of differential equations Handout

Peyam Tabrizian

Friday, November 18th, 2011

This handout is meant to give you a couple more example of all the techniques discussed in chapter 9, to counterbalance all the dry theory and complicated applications in the differential equations book! Enjoy! :)

Note: Make sure to read this carefully! The methods presented in the book are a bit strange and convoluted, hopefully the ones presented here should be easier to understand!

1 Systems of differential equations

Find the general solution to the following system:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}(t)=-x_{1}(t)-x_{2}(t)+3 x_{3}(t) \\
x_{2}^{\prime}(t)=x_{1}(t)+x_{2}(t)-x_{3}(t) \\
x_{3}^{\prime}(t)=-x_{1}(t)-x_{2}(t)+3 x_{3}(t)
\end{array}\right.
$$

First re-write the system in matrix form:

$$
\mathrm{x}^{\prime}=A \mathbf{x}
$$

Where:

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right] \quad A=\left[\begin{array}{ccc}
-1 & -1 & 3 \\
1 & 1 & -1 \\
-1 & -1 & 3
\end{array}\right]
$$

Now diagonalize $A: A=P D P^{-1}$, where:

$$
D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right], P=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & -1 \\
1 & 1 & 0
\end{array}\right]
$$

Note: To find the eigenvalues, solve $\operatorname{det}(A-\lambda I)=0$. You should get $\lambda=1,2,0$. The diagonal entries of D are $\lambda=1,2,0$. Then, for each eigenvalue, find a basis for $N u l(A-\lambda I)$. The the columns of P are the eigenvectors you found.

Then use the following fact:
Fact: For each eigenvalue λ and eigenvector \mathbf{v} you found, the corresponding solution is $\mathbf{x}(t)=e^{\lambda t} \mathbf{v}$

Hence here, the solution is:

$$
\mathbf{x}(t)=A e^{t}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+B e^{2 t}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+C\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
$$

(Note: Here $e^{0 t}=1$)

1.1 Aside: Why does this work?

Suppose you want to solve $\mathbf{x}^{\prime}=A \mathbf{x}$, since $A=P D P^{-1}$, this becomes:

$$
\mathbf{x}^{\prime}=P D P^{-1} \mathbf{x}
$$

So:

$$
\mathbf{x}^{\prime}=P D\left(P^{-1} \mathbf{x}\right)
$$

Now let $\mathbf{y}=P^{-1} \mathbf{x}$, so $\mathbf{x}=P \mathbf{y}$ (remember Peyam, not Pexam). Then the above becomes:

$$
\begin{gathered}
\mathbf{x}^{\prime}=P D \mathbf{y} \\
P^{-1} \mathbf{x}^{\prime}=D \mathbf{y}
\end{gathered}
$$

But P^{-1} is like a constant, so it gets inside the derivative!

$$
\left(P^{-1} \mathbf{x}\right)^{\prime}=D \mathbf{y}
$$

Finally, use $\mathbf{y}=P^{-1} \mathbf{x}$, and you get:

$$
\mathbf{y}^{\prime}=D \mathbf{y}
$$

Now solve the system: $\mathbf{y}^{\prime}=D \mathbf{y}$, which is easier to solve:

$$
\left\{\begin{array}{lc}
y_{1}^{\prime}(t)= & y_{1}(t) \\
y_{2}^{\prime}(t)= & 2 y_{1}(t) \\
y_{3}^{\prime}(t)= & 0
\end{array}\right.
$$

Which gives you:

Finally, use $\mathbf{x}=P \mathbf{y}$ to get:

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & -1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
A e^{t} \\
B e^{2 t} \\
C
\end{array}\right]=A e^{t}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+B e^{2 t}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+C\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
$$

Note: The matrix:

$$
X(t)=\left[\begin{array}{ccc}
e^{t} & e^{2 t} & 1 \\
e^{t} & 0 & -1 \\
e^{t} & e^{2 t} & 0
\end{array}\right]
$$

(where you essentially ignore the constants A, B, C) is called a fundamental matrix for the system.

2 Complex eigenvalues

2.1 Solve the system $\mathrm{x}^{\prime}=A \mathrm{x}$, where:

$$
A=\left[\begin{array}{cc}
-1 & -2 \\
8 & -1
\end{array}\right]
$$

Eigenvalues of $A: \lambda=-1 \pm 4 i$.
From now on, only consider one eigenvalue, say $\lambda=-1+4 i$.
A corresponding eigenvector is $\left[\begin{array}{l}i \\ 2\end{array}\right]$

Now use the following fact:
Fact: For each eigenvalue λ and eigenvector \mathbf{v} you found, the corresponding solution is $\mathbf{x}(t)=e^{\lambda t} \mathbf{v}$

Hence, one solution is:

$$
\mathbf{x}(t)=e^{(-1+4 i) t}\left[\begin{array}{l}
i \\
2
\end{array}\right]
$$

Now split into real and imaginary parts and multiply everything out and group everything back into real and imaginary parts to get:

$$
\begin{aligned}
\mathbf{x}(t) & =\left(e^{-t} \cos (4 t)+i e^{-t} \sin (4 t)\right)\left(\left[\begin{array}{l}
0 \\
2
\end{array}\right]+i\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) \\
& =\left(e^{-t} \cos (4 t)\left[\begin{array}{l}
0 \\
2
\end{array}\right]-e^{-t} \sin (4 t)\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+i\left(e^{-t} \sin (4 t)\left[\begin{array}{l}
0 \\
2
\end{array}\right]+e^{-t} \cos (4 t)\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
\end{aligned}
$$

Hence the general solution is:

$$
\mathbf{x}(t)=A\left(e^{-t} \cos (4 t)\left[\begin{array}{l}
0 \\
2
\end{array}\right]-e^{-t} \sin (4 t)\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+B\left(e^{-t} \sin (4 t)\left[\begin{array}{l}
0 \\
2
\end{array}\right]+e^{-t} \cos (4 t)\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
$$

3 Undetermined coefficients

3.1 Solve $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f}$, where

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad \mathbf{f}(t)=\left[\begin{array}{c}
e^{t}+\cos (t) \\
4 e^{t}
\end{array}\right]
$$

As usual, $\mathbf{x}(t)=\mathbf{x}_{\mathbf{0}}(t)+\mathbf{x}_{\mathbf{p}}(t)$, where:

- $\mathbf{x}_{\mathbf{0}}(t)$ is the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$
- $\mathbf{x}_{\mathbf{p}}(t)$ is one particular solution to $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f}(t)$

To find x_{0}, use the techniques discussed in 1.

To find \mathbf{x}_{p}, use:
Undetermined coefficients:

First group the terms in \mathbf{f} which 'look alike':

$$
\mathbf{f}(t)=\left[\begin{array}{c}
e^{t} \\
4 e^{t}
\end{array}\right]+\left[\begin{array}{c}
\cos (t) \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right] e^{t}+\left[\begin{array}{l}
1 \\
0
\end{array}\right] \cos (t)
$$

Now guess:

$$
\mathbf{x}_{\mathbf{p}}=\mathbf{a} e^{t}+\mathbf{b} \cos (t)+\mathbf{c} \sin (t)
$$

where $\mathbf{a}=\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right], \mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right], \mathbf{c}=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$.
Now plug in $\mathbf{x}_{\mathbf{p}}$ into the equation $\mathrm{x}^{\prime}=A \mathbf{x}+\mathbf{f}$, and solve for $\mathbf{a}, \mathbf{b}, \mathbf{c}$

Remarks:

1) Notice how similar this is to our usual way of doing undetermined coefficients! The only difference here is that a is a vector instead of a number!
2) Remember to always put a $\sin (t)$ term whenever you see a $\cos (t)$ term and vice-versa!
3) The same rule about adding a t or not holds in this case too (but it's very rare).

4 Variation of parameters

4.1 Find the general solution to $\mathrm{x}^{\prime}=A \mathrm{x}+\mathrm{f}$, where:

$$
A=\left[\begin{array}{ccc}
-1 & -1 & 3 \\
1 & 1 & -1 \\
-1 & -1 & 3
\end{array}\right] \quad \mathbf{f}(t)=\left[\begin{array}{c}
e^{t} \\
\ln (t) \\
\tan (t)
\end{array}\right]
$$

As usual, $\mathbf{x}(t)=\mathbf{x}_{\mathbf{0}}(t)+\mathbf{x}_{\mathbf{p}}(t)$.
We already found $\mathbf{x}_{\mathbf{0}}(t)$ in the first example:

$$
\mathbf{x}_{\mathbf{0}}(t)=A\left[\begin{array}{l}
e^{t} \\
e^{t} \\
e^{t}
\end{array}\right]+B\left[\begin{array}{c}
e^{2 t} \\
0 \\
e^{2 t}
\end{array}\right]+C\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
$$

To find $\mathbf{x}_{\mathbf{p}}(t)$, use:
Variation of Parameters: Suppose

$$
\mathbf{x}_{\mathbf{p}}(t)=v_{1}(t)\left[\begin{array}{c}
e^{t} \\
e^{t} \\
e^{t}
\end{array}\right]+v_{2}(t)\left[\begin{array}{c}
e^{2 t} \\
0 \\
e^{2 t}
\end{array}\right]+v_{3}(t)\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
$$

Consider the (pre)-Wronskian (or fundamental matrix):

$$
\widetilde{W}(t)=X(t)=\left[\begin{array}{ccc}
e^{t} & e^{2 t} & 1 \\
e^{t} & 0 & -1 \\
e^{t} & e^{2 t} & 0
\end{array}\right]
$$

(essentially put all the vectors you found in one matrix)
And solve:

$$
\widetilde{W}(t)\left[\begin{array}{c}
v_{1}^{\prime}(t) \\
v_{2}^{\prime}(t) \\
v_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{c}
e^{t} \\
\ln (t) \\
\tan (t)
\end{array}\right]
$$

That is:

$$
\left[\begin{array}{l}
v_{1}^{\prime}(t) \\
v_{2}^{\prime}(t) \\
v_{3}^{\prime}(t)
\end{array}\right]=(\widetilde{W}(t))^{-1}\left[\begin{array}{c}
e^{t} \\
\ln (t) \\
\tan (t)
\end{array}\right]
$$

This gives you $v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}$.
To get v_{1}, v_{2}, v_{3}, integrate the equations you found.

And finally, to get \mathbf{x}_{p}, use:

$$
\mathbf{x}_{\mathbf{p}}(t)=v_{1}(t)\left[\begin{array}{l}
e^{t} \\
e^{t} \\
e^{t}
\end{array}\right]+v_{2}(t)\left[\begin{array}{c}
e^{2 t} \\
0 \\
e^{2 t}
\end{array}\right]+v_{3}(t)\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
$$

And hence $\mathbf{x}(t)=\mathbf{x}_{\mathbf{0}}(t)+\mathbf{x}_{\mathbf{p}}(t)$.

Note: The following formula might come in handy:

$$
\text { If } A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \text { then } \quad A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

5 Matrix exponential

5.1 Find $e^{A t}$, where:

$$
A=\left[\begin{array}{ccc}
-2 & 0 & 0 \\
4 & -2 & 0 \\
1 & 0 & -2
\end{array}\right]
$$

Eigenvalues of $A: \lambda=-2$, with multiplicity 3 .
IMPORTANT: The following technique works only in this case (where we have one eigenvalue with full multiplicity). For all the other cases, use the next example.

Then:

$$
e^{A t}=e^{-2 t}\left(I+(A+2 I) t+(A+2 I)^{2} \frac{t^{2}}{2!}\right)=\left[\begin{array}{ccc}
e^{-2 t} & 0 & 0 \\
4 t e^{-2 t} & e^{-2 t} & 0 \\
t e^{-2 t} & 0 & e^{-2 t}
\end{array}\right]
$$

Note: If λ had multiplicity 2 , we would stop at $(A+2 I) t$. But if it had multiplicity 4 , we would add a $(A+2 I)^{3} \frac{t^{3}}{3!}$ term.

General method:

5.2 Find $e^{A t}$, where:

$$
A=\left[\begin{array}{cc}
16 & -35 \\
6 & -13
\end{array}\right]
$$

Diagonalize $A: A=P D P^{-1}$, where:

$$
D=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right], \quad P=\left[\begin{array}{ll}
5 & 7 \\
2 & 3
\end{array}\right]
$$

Then:

$$
e^{A t}=P e^{D t} P^{-1}=\left[\begin{array}{ll}
5 & 7 \\
2 & 3
\end{array}\right]\left[\begin{array}{cc}
e^{2 t} & 0 \\
0 & e^{t}
\end{array}\right]\left[\begin{array}{ll}
5 & 7 \\
2 & 3
\end{array}\right]^{-1}=\left[\begin{array}{cl}
15 e^{2 t}-14 e^{t} & 35 e^{t}-35 e^{2 t} \\
6 e^{2 t}-6 e^{t} & 15 e^{t}-14 e^{2 t}
\end{array}\right]
$$

Point: The general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$ is $\mathbf{x}(t)=e^{A t} \mathbf{c}$, where \mathbf{c} is a constant vector!

Here, we get:

$$
\mathbf{x}(t)=A\left[\begin{array}{c}
15 e^{2 t}-14 e^{t} \\
6 e^{2 t}-6 e^{t}
\end{array}\right]+B\left[\begin{array}{l}
35 e^{t}-35 e^{2 t} \\
15 e^{t}-14 e^{2 t}
\end{array}\right]
$$

